Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Pharmacol Res Perspect ; 11(1): e01039, 2023 02.
Artículo en Inglés | MEDLINE | ID: covidwho-2245726

RESUMEN

Hyper-inflammation, cytokine storm, and recruitment of immune cells lead to uncontrollable endothelial cell damage in patients with coronavirus disease 2019 (COVID-19). Sphingosine 1-phosphate (S1P) signaling is needed for endothelial integrity and its decreased serum level is a predictor of clinical severity in COVID-19. In this clinical trial, the effect of Fingolimod, an agonist of S1P, was evaluated on patients with COVID-19. Forty patients with moderate to severe COVID-19 were enrolled and divided into two groups including (1) the control group (n = 21) receiving the national standard regimen for COVID-19 patients and (2) the intervention group (n = 19) that prescribed daily Fingolimod (0.5 mg) for 3 days besides receiving the standard national regimen for COVID-19. The hospitalization period, re-admission rate, intensive care unit (ICU) administration, need for mechanical ventilation, and mortality rate were assessed as primary outcomes in both groups. The results showed that re-admission was significantly decreased in COVID-19 patients who received Fingolimod compared to the controls (p = .04). In addition, the hemoglobin levels of the COVID-19 patients in the intervention group were increased compared to the controls (p = .018). However, no significant differences were found regarding the intubation or mortality rate between the groups (p > .05). Fingolimod could significantly reduce the re-admission rate after hospitalization with COVID-19. Fingolimod may not enhance patients' outcomes with moderate COVID-19. It is necessary to examine these findings in a larger cohort of patients with severe to critical COVID-19.


Asunto(s)
COVID-19 , Humanos , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , SARS-CoV-2 , Esfingosina/uso terapéutico
2.
Cells ; 10(5)2021 05 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1223958

RESUMEN

Sphingolipids are important structural membrane components and, together with cholesterol, are often organized in lipid rafts, where they act as signaling molecules in many cellular functions. They play crucial roles in regulating pathobiological processes, such as cancer, inflammation, and infectious diseases. The bioactive metabolites ceramide, sphingosine-1-phosphate, and sphingosine have been shown to be involved in the pathogenesis of several microbes. In contrast to ceramide, which often promotes bacterial and viral infections (for instance, by mediating adhesion and internalization), sphingosine, which is released from ceramide by the activity of ceramidases, kills many bacterial, viral, and fungal pathogens. In particular, sphingosine is an important natural component of the defense against bacterial pathogens in the respiratory tract. Pathologically reduced sphingosine levels in cystic fibrosis airway epithelial cells are normalized by inhalation of sphingosine, and coating plastic implants with sphingosine prevents bacterial infections. Pretreatment of cells with exogenous sphingosine also prevents the viral spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) from interacting with host cell receptors and inhibits the propagation of herpes simplex virus type 1 (HSV-1) in macrophages. Recent examinations reveal that the bactericidal effect of sphingosine might be due to bacterial membrane permeabilization and the subsequent death of the bacteria.


Asunto(s)
Infecciones Bacterianas/inmunología , Micosis/inmunología , Transducción de Señal/inmunología , Esfingosina/metabolismo , Virosis/inmunología , Animales , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/metabolismo , Infecciones Bacterianas/microbiología , Pared Celular/efectos de los fármacos , Ceramidas/metabolismo , Modelos Animales de Enfermedad , Herpesvirus Humano 1/inmunología , Humanos , Lisofosfolípidos/metabolismo , Microdominios de Membrana/inmunología , Microdominios de Membrana/metabolismo , Micosis/tratamiento farmacológico , Micosis/metabolismo , Micosis/microbiología , SARS-CoV-2/inmunología , Esfingolípidos/metabolismo , Esfingosina/análogos & derivados , Esfingosina/farmacología , Esfingosina/uso terapéutico , Virosis/tratamiento farmacológico , Virosis/metabolismo , Virosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA